Protonation state of E71 in KcsA and its role for channel collapse and inactivation.
نویسندگان
چکیده
The prototypical prokaryotic potassium channel KcsA alters its pore depending on the ambient potassium; at high potassium, it exists in a conductive form, and at low potassium, it collapses into a nonconductive structure with reduced ion occupancy. We present solid-state NMR studies of KcsA in which we test the hypothesis that an important channel-inactivation process, known as C-type inactivation, proceeds via a state similar to this collapsed state. We test this using an inactivation-resistant mutant E71A, and show that E71A is unable to collapse its pore at both low potassium and low pH, suggesting that the collapsed state is structurally similar to the inactivated state. We also show that E71A has a disordered selectivity filter. Using site-specific K(+) titrations, we detect a local change at E71 that is coupled to channel collapse at low K(+). To gain more insight into this change, we site specifically measure the chemical shift tensors of the side-chain carboxyls of E71 and its hydrogen bond partner D80, and use the tensors to assign protonation states to E71 and D80 at high K(+) and neutral pH. Our measurements show that E71 is protonated at pH 7.5 and must have an unusually perturbed pK(a) (> 7.5) suggesting that the change at E71 is a structural rearrangement rather than a protonation event. The results offer new mechanistic insights into why the widely used mutant KcsA-E71A does not inactivate and establish the ambient K(+) level as a means to populate the inactivated state of KcsA in a controlled way.
منابع مشابه
Mechanism for selectivity-inactivation coupling in KcsA potassium channels.
Structures of the prokaryotic K(+) channel, KcsA, highlight the role of the selectivity filter carbonyls from the GYG signature sequence in determining a highly selective pore, but channels displaying this sequence vary widely in their cation selectivity. Furthermore, variable selectivity can be found within the same channel during a process called C-type inactivation. We investigated the mecha...
متن کاملA Quantitative Description of KcsA Gating I: Macroscopic Currents
The prokaryotic K(+) channel KcsA is activated by intracellular protons and its gating is modulated by transmembrane voltage. Typically, KcsA functions have been studied under steady-state conditions, using macroscopic Rb(+)-flux experiments and single-channel current measurements. These studies have provided limited insights into the gating kinetics of KcsA due to its low open probability, unc...
متن کاملA multipoint hydrogen-bond network underlying KcsA C-type inactivation.
In the prokaryotic potassium channel KcsA activation gating at the inner bundle gate is followed by C-type inactivation at the selectivity filter. Entry into the C-type inactivated state has been directly linked to the strength of the H-bond interaction between residues Glu-71 and Asp-80 behind the filter, and is allosterically triggered by the rearrangement of the inner bundle gate. Here, we s...
متن کاملConformational changes in the selectivity filter of the open-state KcsA channel: an energy minimization study.
Potassium channels switch between closed and open conformations and selectively conduct K(+) ions. There are at least two gates. The TM2 bundle at the intracellular site is the primary gate of KcsA, and rearrangements at the selectivity filter (SF) act as the second gate. The SF blocks ion flow via an inactivation process similar to C-type inactivation of voltage-gated K(+) channels. We recentl...
متن کاملThe protonation state of the Glu-71/Asp-80 residues in the KcsA potassium channel: a first-principles QM/MM molecular dynamics study.
Although a few x-ray structures of the KcsA K(+) channel have been crystallized several issues concerning the mechanisms of the ionic permeation and the protonation state of the selectivity filter ionizable side chains are still open. Using a first-principles quantum mechanical/molecular mechanical simulation approach, we have investigated the protonation state of Glu-71 and Asp-80, two importa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 38 شماره
صفحات -
تاریخ انتشار 2012